强化学习(RL)的显着成功在很大程度上依赖于观察每个访问的州行动对的奖励。但是,在许多现实世界应用中,代理只能观察一个代表整个轨迹质量的分数,该分数称为{\ em轨迹方面的奖励}。在这种情况下,标准RL方法很难很好地利用轨迹的奖励,并且在政策评估中可能会产生巨大的偏见和方差错误。在这项工作中,我们提出了一种新颖的离线RL算法,称为悲观的价值迭代,奖励分解(分开),该算法将轨迹返回分解为每个步骤代理奖励,通过基于最小二乘的奖励重新分配,然后执行基于基于基于基于基于的价值迭代的迭代价值迭代的迭代迭代率关于博学的代理奖励。为了确保由分开构建的价值功能对最佳函数始终是悲观的,我们设计了一个新的罚款术语来抵消代理奖励的不确定性。对于具有较大状态空间的一般情节MDP,我们表明与过度参数化的神经网络函数近似近似能够实现$ \ tilde {\ Mathcal {o}}}(d _ {\ text {eff}}} h^2/\ sqrt {n}) $ suboftimality,其中$ h $是情节的长度,$ n $是样本总数,而$ d _ {\ text {eff}} $是神经切线核矩阵的有效维度。为了进一步说明结果,我们表明分开实现了$ \ tilde {\ mathcal {o}}}(dh^3/\ sqrt {n})$ subiptimation fi linearem mdps,其中$ d $是特征尺寸,匹配功能维度使用神经网络功能近似,当$ d _ {\ text {eff}} = dh $时。据我们所知,分开是第一种离线RL算法,在MDP总体上,轨迹奖励的效率非常有效。
translated by 谷歌翻译
现有的离线增强学习(RL)方法面临一些主要挑战,尤其是学识渊博的政策与行为政策之间的分配转变。离线Meta-RL正在成为应对这些挑战的一种有前途的方法,旨在从一系列任务中学习信息丰富的元基础。然而,如我们的实证研究所示,离线元RL在具有良好数据集质量的任务上的单个任务RL方法可能胜过,这表明必须在“探索”不合时宜的情况下进行精细的平衡。通过遵循元元素和“利用”离线数据集的分配状态行为,保持靠近行为策略。通过这种经验分析的激励,我们探索了基于模型的离线元RL,并具有正则政策优化(MERPO),该策略优化(MERPO)学习了一种用于有效任务结构推理的元模型,并提供了提供信息的元元素,以安全地探索过分分布状态 - 行为。特别是,我们使用保守的政策评估和正规政策改进,设计了一种新的基于元指数的基于元指数的基于元模型的参与者批判性(RAC),作为MERPO的关键构建块作为Merpo的关键构建块;而其中的内在权衡是通过在两个正规机构之间达到正确的平衡来实现的,一个是基于行为政策,另一个基于元政策。从理论上讲,我们学识渊博的政策可以保证对行为政策和元政策都有保证的改进,从而确保通过离线元RL对新任务的绩效提高。实验证实了Merpo优于现有的离线META-RL方法的出色性能。
translated by 谷歌翻译
保守主义的概念导致了离线强化学习(RL)的重要进展,其中代理从预先收集的数据集中学习。但是,尽可能多的实际方案涉及多个代理之间的交互,解决更实际的多代理设置中的离线RL仍然是一个开放的问题。鉴于最近将Online RL算法转移到多代理设置的成功,可以预期离线RL算法也将直接传输到多代理设置。令人惊讶的是,当基于保守的算法应用于多蛋白酶的算法时,性能显着降低了越来越多的药剂。为了减轻劣化,我们确定了价值函数景观可以是非凹形的关键问题,并且策略梯度改进容易出现本地最优。自从任何代理人的次优政策可能导致不协调的全球失败以来,多个代理人会加剧问题。在这种直觉之后,我们提出了一种简单而有效的方法,脱机多代理RL与演员整流(OMAR),通过有效的一阶政策梯度和Zeroth订单优化方法为演员更好地解决这一关键挑战优化保守值函数。尽管简单,奥马尔显着优于强大的基线,在多售后连续控制基准测试中具有最先进的性能。
translated by 谷歌翻译
强调时间差异(ETD)学习(Sutton et al。,2016)是一种成功的方法,可以通过功能近似进行政体值函数评估。尽管已显示ETD渐近地收敛到理想的值函数,但众所周知,ETD通常会遇到较大的方差,因此其样品复杂性可以随迭代次数的数量而迅速地增加。在这项工作中,我们提出了一种新的ETD方法,称为per-eTD(即定期重新启动-ETD),该方法仅在评估参数的每个迭代中重新启动和更新后续跟踪。此外,Per-ETD的设计是重新启动时期的对数增加的设计与迭代次数的数量,这确保了差异和偏见之间的最佳折衷,并使均消失了。我们表明,每个ETD收敛到与ETD相同的理想固定点,但提高了ETD的指数样品复杂性为多项式。我们的实验验证了Per-ETD的出色性能及其优于ETD的优势。
translated by 谷歌翻译
Fine-grained capturing of 3D HOI boosts human activity understanding and facilitates downstream visual tasks, including action recognition, holistic scene reconstruction, and human motion synthesis. Despite its significance, existing works mostly assume that humans interact with rigid objects using only a few body parts, limiting their scope. In this paper, we address the challenging problem of f-AHOI, wherein the whole human bodies interact with articulated objects, whose parts are connected by movable joints. We present CHAIRS, a large-scale motion-captured f-AHOI dataset, consisting of 16.2 hours of versatile interactions between 46 participants and 81 articulated and rigid sittable objects. CHAIRS provides 3D meshes of both humans and articulated objects during the entire interactive process, as well as realistic and physically plausible full-body interactions. We show the value of CHAIRS with object pose estimation. By learning the geometrical relationships in HOI, we devise the very first model that leverage human pose estimation to tackle the estimation of articulated object poses and shapes during whole-body interactions. Given an image and an estimated human pose, our model first reconstructs the pose and shape of the object, then optimizes the reconstruction according to a learned interaction prior. Under both evaluation settings (e.g., with or without the knowledge of objects' geometries/structures), our model significantly outperforms baselines. We hope CHAIRS will promote the community towards finer-grained interaction understanding. We will make the data/code publicly available.
translated by 谷歌翻译
Neural sequence models, especially transformers, exhibit a remarkable capacity for in-context learning. They can construct new predictors from sequences of labeled examples $(x, f(x))$ presented in the input without further parameter updates. We investigate the hypothesis that transformer-based in-context learners implement standard learning algorithms implicitly, by encoding smaller models in their activations, and updating these implicit models as new examples appear in the context. Using linear regression as a prototypical problem, we offer three sources of evidence for this hypothesis. First, we prove by construction that transformers can implement learning algorithms for linear models based on gradient descent and closed-form ridge regression. Second, we show that trained in-context learners closely match the predictors computed by gradient descent, ridge regression, and exact least-squares regression, transitioning between different predictors as transformer depth and dataset noise vary, and converging to Bayesian estimators for large widths and depths. Third, we present preliminary evidence that in-context learners share algorithmic features with these predictors: learners' late layers non-linearly encode weight vectors and moment matrices. These results suggest that in-context learning is understandable in algorithmic terms, and that (at least in the linear case) learners may rediscover standard estimation algorithms. Code and reference implementations are released at https://github.com/ekinakyurek/google-research/blob/master/incontext.
translated by 谷歌翻译
Real-world machine learning applications often involve deploying neural networks to domains that are not seen in the training time. Hence, we need to understand the extrapolation of nonlinear models -- under what conditions on the distributions and function class, models can be guaranteed to extrapolate to new test distributions. The question is very challenging because even two-layer neural networks cannot be guaranteed to extrapolate outside the support of the training distribution without further assumptions on the domain shift. This paper makes some initial steps toward analyzing the extrapolation of nonlinear models for structured domain shift. We primarily consider settings where the marginal distribution of each coordinate of the data (or subset of coordinates) does not shift significantly across the training and test distributions, but the joint distribution may have a much bigger shift. We prove that the family of nonlinear models of the form $f(x)=\sum f_i(x_i)$, where $f_i$ is an arbitrary function on the subset of features $x_i$, can extrapolate to unseen distributions, if the covariance of the features is well-conditioned. To the best of our knowledge, this is the first result that goes beyond linear models and the bounded density ratio assumption, even though the assumptions on the distribution shift and function class are stylized.
translated by 谷歌翻译
Sharpness-Aware Minimization (SAM) is a highly effective regularization technique for improving the generalization of deep neural networks for various settings. However, the underlying working of SAM remains elusive because of various intriguing approximations in the theoretical characterizations. SAM intends to penalize a notion of sharpness of the model but implements a computationally efficient variant; moreover, a third notion of sharpness was used for proving generalization guarantees. The subtle differences in these notions of sharpness can indeed lead to significantly different empirical results. This paper rigorously nails down the exact sharpness notion that SAM regularizes and clarifies the underlying mechanism. We also show that the two steps of approximations in the original motivation of SAM individually lead to inaccurate local conclusions, but their combination accidentally reveals the correct effect, when full-batch gradients are applied. Furthermore, we also prove that the stochastic version of SAM in fact regularizes the third notion of sharpness mentioned above, which is most likely to be the preferred notion for practical performance. The key mechanism behind this intriguing phenomenon is the alignment between the gradient and the top eigenvector of Hessian when SAM is applied.
translated by 谷歌翻译
我们经常在强大的机器学习中看到不良的权衡,其中分布(OOD)的精度与分布式(ID)的准确性不一致:通过删除伪造功能的专用技术获得的强大分类器通常具有更好的OOD,但ID较差,但ID较差。与通过ERM训练的标准分类器相比,准确性。在本文中,我们发现由ID校准的合奏(仅在ID数据上校准ID数据之后简单地整合标准和健壮的模型)优于ID和ID和OOD准确性。在11个自然分配移位数据集中,ID校准的合奏获得了两全其美的最佳:强大的ID准确性和OOD精度。我们在风格化的设置中分析了此方法,并确定了两个重要条件以使合奏执行良好的ID和OOD:(1)我们需要校准标准和可靠的模型(在ID数据上,因为OOD数据不可用),(2)OOD没有反相关的虚假特征。
translated by 谷歌翻译
现代机器学习中的一个主要挑战是理论上了解过度参数化模型的概括属性。许多现有工具依赖于\ em统一的收敛\ em(UC),该属性在拥有时保证测试损失将接近培训损失,并在一类候选模型上均匀地进行。 Nagarajan和Kolter(2019)表明,在某些简单的线性和神经网络设置中,任何统一的融合绑定都将是空置的,这是如何在UC失败的设置中证明概括的问题。我们的主要贡献是在两个这样的环境中证明了新的概括界限,一种线性和一种非线性。我们研究了Nagarajan和Kolter的线性分类设置,以及通过非线性政权中的两层神经网络学到的二次地面真实函数。我们证明了一种新类型的边距结合,表明高于某个信号到噪声阈值,在这两种设置中,任何接近最大的最大分类器几乎都不会实现测试损失。我们的结果表明,接近最大利润很重要:虽然任何实现至少达到$(1 - \ epsilon)$的模型 - 最大额度的分数很好地概括了,但分类器可实现一半的最大值。 。我们还加强了Nagarajan和Kolter的UC不可能结果,证明了\ em单方面\ EM UC的边界和经典边界界限将在接近最大的最大量化分类器上失败。我们的分析提供了有关为什么记忆可以与概括共存的洞察力:我们表明,在发生概括但UC失败的这种挑战性方案中,近乎最大的最细边缘分类器同时包含一些可概括的组件和一些可记住数据的过度拟合组件。过度拟合组件的存在足以排除UC,但是近超级余量保证存在足够的可推广组件。
translated by 谷歌翻译